Heidelberg colorectal data set for surgical data science in the sensor operating room
-
Published:2021-04-12
Issue:1
Volume:8
Page:
-
ISSN:2052-4463
-
Container-title:Scientific Data
-
language:en
-
Short-container-title:Sci Data
Author:
Maier-Hein LenaORCID, Wagner MartinORCID, Ross TobiasORCID, Reinke Annika, Bodenstedt Sebastian, Full Peter M., Hempe Hellena, Mindroc-Filimon Diana, Scholz Patrick, Tran Thuy Nuong, Bruno PierangelaORCID, Kisilenko Anna, Müller Benjamin, Davitashvili Tornike, Capek Manuela, Tizabi Minu D., Eisenmann Matthias, Adler Tim J., Gröhl JanekORCID, Schellenberg Melanie, Seidlitz Silvia, Lai T. Y. Emmy, Pekdemir Bünyamin, Roethlingshoefer Veith, Both Fabian, Bittel Sebastian, Mengler Marc, Mündermann Lars, Apitz Martin, Kopp-Schneider Annette, Speidel Stefanie, Nickel FelixORCID, Probst PascalORCID, Kenngott Hannes G., Müller-Stich Beat P.
Abstract
AbstractImage-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.
Funder
Nationales Centrum für Tumorerkrankungen Heidelberg Bundesministerium für Wirtschaft und Energie Intuitive Surgical
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Reference20 articles.
1. Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696, https://doi.org/10.1038/s41551-017-0132-7 (2017). 2. Islam, M., Li, Y. & Ren, H. Learning where to look while tracking instruments in robot-assisted surgery. in Med. Image Comput. Comput. Assist. Interv., 412–420 (Springer, 2019). 3. Funke, I., Mees, S. T., Weitz, J. & Speidel, S. Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1217–1225, https://doi.org/10.1007/s11548-019-01995-1 (2019). 4. Allan, M. et al. 2017 Robotic instrument segmentation challenge. Preprint at https://arxiv.org/abs/1902.06426 (2019). 5. Ross, T. et al. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int. J. Comput. Assist. Radiol. Surg. 13, 925–933, https://doi.org/10.1007/s11548-018-1772-0 (2018).
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|