Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction

Author:

Bravo-Merodio LauraORCID,Acharjee AnimeshORCID,Hazeldine Jon,Bentley ConorORCID,Foster Mark,Gkoutos Georgios V.ORCID,Lord Janet M.ORCID

Abstract

AbstractThe immune response to major trauma has been analysed mainly within post-hospital admission settings where the inflammatory response is already underway and the early drivers of clinical outcome cannot be readily determined. Thus, there is a need to better understand the immediate immune response to injury and how this might influence important patient outcomes such as multi-organ dysfunction syndrome (MODS). In this study, we have assessed the immune response to trauma in 61 patients at three different post-injury time points (ultra-early (<=1 h), 4–12 h, 48–72 h) and analysed relationships with the development of MODS. We developed a pipeline using Absolute Shrinkage and Selection Operator and Elastic Net feature selection methods that were able to identify 3 physiological features (decrease in neutrophil CD62L and CD63 expression and monocyte CD63 expression and frequency) as possible biomarkers for MODS development. After univariate and multivariate analysis for each feature alongside a stability analysis, the addition of these 3 markers to standard clinical trauma injury severity scores yields a Generalized Liner Model (GLM) with an average Area Under the Curve value of 0.92 ± 0.06. This performance provides an 8% improvement over the Probability of Survival (PS14) outcome measure and a 13% improvement over the New Injury Severity Score (NISS) for identifying patients at risk of MODS.

Funder

Wellcome Trust

DH | National Institute for Health Research

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3