Folding the human proteome using BioNeMo: A fused dataset of structural models for machine learning purposes

Author:

Hetmann Michael,Parigger Lena,Sirelkhatim Hassan,Stern Abraham,Krassnigg Andreas,Gruber Karl,Steinkellner Georg,Ruau David,Gruber Christian C.

Abstract

AbstractHuman proteins are crucial players in both health and disease. Understanding their molecular landscape is a central topic in biological research. Here, we present an extensive dataset of predicted protein structures for 42,042 distinct human proteins, including splicing variants, derived from the UniProt reference proteome UP000005640. To ensure high quality and comparability, the dataset was generated by combining state-of-the-art modeling-tools AlphaFold 2, OpenFold, and ESMFold, provided within NVIDIA’s BioNeMo platform, as well as homology modeling using Innophore’s CavitomiX platform. Our dataset is offered in both unedited and edited formats for diverse research requirements. The unedited version contains structures as generated by the different prediction methods, whereas the edited version contains refinements, including a dataset of structures without low prediction-confidence regions and structures in complex with predicted ligands based on homologs in the PDB. We are confident that this dataset represents the most comprehensive collection of human protein structures available today, facilitating diverse applications such as structure-based drug design and the prediction of protein function and interactions.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3