A study on interoperability between two Personal Health Train infrastructures in leukodystrophy data analysis

Author:

Welten SaschaORCID,de Arruda Botelho Herr Marius,Hempel Lars,Hieber David,Placzek Peter,Graf Michael,Weber Sven,Neumann Laurenz,Jugl Maximilian,Tirpitz Liam,Kindermann KarlORCID,Geisler Sandra,Bonino da Silva Santos Luiz OlavoORCID,Decker StefanORCID,Pfeifer NicoORCID,Kohlbacher OliverORCID,Kirsten Toralf

Abstract

AbstractThe development of platforms for distributed analytics has been driven by a growing need to comply with various governance-related or legal constraints. Among these platforms, the so-called Personal Health Train (PHT) is one representative that has emerged over the recent years. However, in projects that require data from sites featuring different PHT infrastructures, institutions are facing challenges emerging from the combination of multiple PHT ecosystems, including data governance, regulatory compliance, or the modification of existing workflows. In these scenarios, the interoperability of the platforms is preferable. In this work, we introduce a conceptual framework for the technical interoperability of the PHT covering five essential requirements: Data integration, unified station identifiers, mutual metadata, aligned security protocols, and business logic. We evaluated our concept in a feasibility study that involves two distinct PHT infrastructures: PHT-meDIC and PADME. We analyzed data on leukodystrophy from patients in the University Hospitals of Tübingen and Leipzig, and patients with differential diagnoses at the University Hospital Aachen. The results of our study demonstrate the technical interoperability between these two PHT infrastructures, allowing researchers to perform analyses across the participating institutions. Our method is more space-efficient compared to the multi-homing strategy, and it shows only a minimal time overhead.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3