A global dynamic runoff application and dataset based on the assimilation of GPM, SMAP, and GCN250 curve number datasets

Author:

Sujud Lara H.,Jaafar Hadi H.ORCID

Abstract

AbstractRunoff modelling is a crucial element in hydrologic sciences. However, a global runoff database is not currently available at a resolution higher than 0.1°. We use the recently developed Global Curve Number dataset (GCN250) to develop a dynamic runoff application (2015 – present) and that can be accessed via a Google Earth Engine application. We also provide a global mean monthly runoff dataset for April 2015-2021 in GeoTIFF format at a 250-meter resolution. We utilize soil moisture and GPM rainfall to dynamically retrieve the appropriate curve number and generate the corresponding runoff anywhere on Earth. Mean annual global runoff ratio results for 2021 were comparable to the runoff ratio from the Global Land Data Assimilation System (0.079 vs. 0.077, respectively). Mean annual global runoff from GCN and GLDAS were within 11% each other for 2020–2021 (0.18 vs. 0.16 mm/day, respectively). The GCN250 runoff application and the dataset are useful for many water applications such hydrologic design, land management, water resources management, and flood risk assessment.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3