Dataset on electrical single-family house and heat pump load profiles in Germany

Author:

Schlemminger MarlonORCID,Ohrdes TobiasORCID,Schneider Elisabeth,Knoop Michael

Abstract

AbstractThis paper describes a dataset of residential electricity household and heat pump load profiles, measured in 38 single-family houses in Northern Germany. We provide data per household of apparent, active and reactive power (W), voltage (V), current (A) and the power factor (no unit) in 10 seconds to 60 minutes temporal resolution from May 2018 to the end of 2020. We validated the dataset both in itself, comparing different measurements that should produce the same results, and externally to standard load profiles and found no major inconsistencies. We identified an average consumption per single-family house with 2.38 inhabitants of 2829 kWh for the household and an additional 4993 kWh for the heat pump. The dataset can support the understanding of patterns in electrical load curves and can help to estimate the additional load on distribution networks induced by heat pumps.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference24 articles.

1. Eurostat. Energy consumption in households. Eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households (2020).

2. Tjaden, T., Bergner, J., Weniger, J. & Quaschning, V. Repräsentative Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis. HTW Berlin https://pvspeicher.htw-berlin.de/veroeffentlichungen/daten/lastprofile/ (2015).

3. Trindade, A. ElectricityLoadDiagrams20112014 Data Set. Center for Machine Learning and Intelligent Systems https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 (2015).

4. Hebrail, G. & Berard, A. Individual household electric power consumption data set. Center for Machine Learning and Intelligent Systems http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption (2012).

5. Makonin, S., Ellert, B., Bajić, I. V. & Popowich, F. Popowich. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data 3, 1–12; https://doi.org/10.1038/sdata.2016.37.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3