Thinking out loud, an open-access EEG-based BCI dataset for inner speech recognition

Author:

Nieto NicolásORCID,Peterson Victoria,Rufiner Hugo LeonardoORCID,Kamienkowski Juan Esteban,Spies Ruben

Abstract

AbstractSurface electroencephalography is a standard and noninvasive way to measure electrical brain activity. Recent advances in artificial intelligence led to significant improvements in the automatic detection of brain patterns, allowing increasingly faster, more reliable and accessible Brain-Computer Interfaces. Different paradigms have been used to enable the human-machine interaction and the last few years have broad a mark increase in the interest for interpreting and characterizing the “inner voice” phenomenon. This paradigm, called inner speech, raises the possibility of executing an order just by thinking about it, allowing a “natural” way of controlling external devices. Unfortunately, the lack of publicly available electroencephalography datasets, restricts the development of new techniques for inner speech recognition. A ten-participant dataset acquired under this and two others related paradigms, recorded with an acquisition system of 136 channels, is presented. The main purpose of this work is to provide the scientific community with an open-access multiclass electroencephalography database of inner speech commands that could be used for better understanding of the related brain mechanisms.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad Nacional del Litoral

Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ten quick tips for clinical electroencephalographic (EEG) data acquisition and signal processing;PeerJ Computer Science;2024-09-03

2. High-sensitivity nanostructure-based sensor using Fano resonance for noninvasive EEG monitoring;Measurement;2024-09

3. Masked EEG Modeling for Driving Intention Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Thinking is Like Processing a Sequence of Spatial and Temporal Words;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Decoding imagined speech with delay differential analysis;Frontiers in Human Neuroscience;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3