A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms

Author:

Liew Sook-LeiORCID,Lo Bethany P.,Donnelly Miranda R.,Zavaliangos-Petropulu Artemis,Jeong Jessica N.,Barisano GiuseppeORCID,Hutton Alexandre,Simon Julia P.,Juliano Julia M.,Suri Anisha,Wang Zhizhuo,Abdullah Aisha,Kim Jun,Ard TylerORCID,Banaj Nerisa,Borich Michael R.,Boyd Lara A.ORCID,Brodtmann Amy,Buetefisch Cathrin M.ORCID,Cao Lei,Cassidy Jessica M.ORCID,Ciullo Valentina,Conforto Adriana B.,Cramer Steven C.,Dacosta-Aguayo Rosalia,de la Rosa Ezequiel,Domin MartinORCID,Dula Adrienne N.,Feng Wuwei,Franco Alexandre R.,Geranmayeh Fatemeh,Gramfort AlexandreORCID,Gregory Chris M.,Hanlon Colleen A.ORCID,Hordacre Brenton G.,Kautz Steven A.ORCID,Khlif Mohamed Salah,Kim Hosung,Kirschke Jan S.ORCID,Liu Jingchun,Lotze MartinORCID,MacIntosh Bradley J.,Mataró Maria,Mohamed Feroze B.,Nordvik Jan E.,Park Gilsoon,Pienta AmyORCID,Piras FabrizioORCID,Redman Shane M.,Revill Kate P.,Reyes Mauricio,Robertson Andrew D.ORCID,Seo Na Jin,Soekadar Surjo R.,Spalletta Gianfranco,Sweet Alison,Telenczuk MariaORCID,Thielman Gregory,Westlye Lars T.ORCID,Winstein Carolee J.,Wittenberg George F.ORCID,Wong Kristin A.,Yu Chunshui

Abstract

AbstractAccurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3