Abstract
AbstractDue to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.
Funder
Dres. Jutta & Georg Bruns Stiftung für innovative Veterinärmedizin
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献