A dataset for fatigue estimation during shoulder internal and external rotation movements using wearables

Author:

Yasar Merve NurORCID,Sica Marco,O’Flynn Brendan,Tedesco SalvatoreORCID,Menolotto MatteoORCID

Abstract

AbstractWearable sensors have recently been extensively used in sports science, physical rehabilitation, and industry providing feedback on physical fatigue. Information obtained from wearable sensors can be analyzed by predictive analytics methods, such as machine learning algorithms, to determine fatigue during shoulder joint movements, which have complex biomechanics. The presented dataset aims to provide data collected via wearable sensors during a fatigue protocol involving dynamic shoulder internal rotation (IR) and external rotation (ER) movements. Thirty-four healthy subjects performed shoulder IR and ER movements with different percentages of maximal voluntary isometric contraction (MVIC) force until they reached the maximal exertion. The dataset includes demographic information, anthropometric measurements, MVIC force measurements, and digital data captured via surface electromyography, inertial measurement unit, and photoplethysmography, as well as self-reported assessments using the Borg rating scale of perceived exertion and the Karolinska sleepiness scale. This comprehensive dataset provides valuable insights into physical fatigue assessment, allowing the development of fatigue detection/prediction algorithms and the study of human biomechanical characteristics during shoulder movements within a fatigue protocol.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3