A curated dataset for data-driven turbulence modelling

Author:

McConkey RyleyORCID,Yee Eugene,Lien Fue-SangORCID

Abstract

AbstractThe recent surge in machine learning augmented turbulence modelling is a promising approach for addressing the limitations of Reynolds-averaged Navier-Stokes (RANS) models. This work presents the development of the first open-source dataset, curated and structured for immediate use in machine learning augmented corrective turbulence closure modelling. The dataset features a variety of RANS simulations with matching direct numerical simulation (DNS) and large-eddy simulation (LES) data. Four turbulence models are selected to form the initial dataset: k-ε, k-ε-ϕt-f, k-ω, and k-ω SST. The dataset consists of 29 cases per turbulence model, for several parametrically sweeping reference DNS/LES cases: periodic hills, square duct, parametric bumps, converging-diverging channel, and a curved backward-facing step. At each of the 895,640 points, various RANS features with DNS/LES labels are available. The feature set includes quantities used in current state-of-the-art models, and additional fields which enable the generation of new feature sets. The dataset reduces effort required to train, test, and benchmark new corrective RANS models. The dataset is available at 10.34740/kaggle/dsv/2637500.

Funder

Government of Ontario, Tyler Lewis Clean Energy Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference36 articles.

1. Slotnick, J., Khodadoust, A., Alonso, J. & Darmofal, D. CFD vision 2030 study: A path to revolutionary computational aerosciences. Tech. Rep. March (2014).

2. Wilcox, D. C. Turbulence Modelling for CFD (DCW Industries, Inc., 1994), 2 edn.

3. Catalano, P. & Amato, M. An evaluation of RANS turbulence modelling for aerodynamic applications. Aerospace Science and Technology 7, 493–509, https://doi.org/10.1016/S1270-9638(03)00061-0 (2003).

4. Pope, S. B. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics 72, 331, https://doi.org/10.1017/S0022112075003382 (1975).

5. Witherden, F. D. & Jameson, A. Future directions of computational fluid dynamics. 23rd AIAA Computational Fluid Dynamics Conference 2017, 1–16 (2017).

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3