Pixel-wise segmentation of cells in digitized Pap smear images

Author:

Harangi BalazsORCID,Bogacsovics Gergo,Toth JanosORCID,Kovacs Ilona,Dani Erzsebet,Hajdu Andras

Abstract

AbstractA simple and cheap way to recognize cervical cancer is using light microscopic analysis of Pap smear images. Training artificial intelligence-based systems becomes possible in this domain, e.g., to follow the European recommendation to screen negative smears to reduce false negative cases. The first step for such a process is segmenting the cells. A large and manually segmented dataset is required for this task, which can be used to train deep learning-based solutions. We describe a corresponding dataset with accurate manual segmentations for the enclosed cells. Altogether, the APACS23 (Annotated PAp smear images for Cell Segmentation 2023) dataset contains about 37 000 manually segmented cells and is separated into dedicated training and test parts, which could be used for an official benchmark of scientific investigations or a grand challenge.

Funder

New National Excellence Program of the Ministry for Culture and Innovation of Hungary

European Union, European Social Fund

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71, 209–249, https://doi.org/10.3322/caac.21660 (2021).

2. van der Graaf, Y. & Vooijs, G. P. False negative rate in cervical cytology. Journal of Clinical Pathology 40, 438–442, https://doi.org/10.1136/jcp.40.4.438 (1987).

3. Arbyn, M. et al. (eds.) European Guidelines for Quality Assurance in Cervical Cancer Screening (2 edn, Publications Office of the European Union, Luxembourg, 2008).

4. Hologic, Inc. ThinPrep Imaging System - Operation summary and clinical information. https://www.hologic.com/sites/default/files/package-insert/MAN-03938-001_002_02.pdf (2024).

5. Becton, Dickinson and Company. FocalPoint GS Imaging System. https://www.bd.com/en-us/products-and-solutions/products/product-families/bd-focalpoint-gs-imaging-system (2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3