A global database of land management, land-use change and climate change effects on soil organic carbon

Author:

Beillouin DamienORCID,Demenois JulienORCID,Cardinael RémiORCID,Berre DavidORCID,Corbeels MarcORCID,Fallot AbigailORCID,Boyer AnnieORCID,Feder FrédéricORCID

Abstract

AbstractIncreasing soil organic carbon (SOC) in natural and cultivated ecosystems is proposed as a natural climate solution to limit global warming. SOC dynamics is driven by numerous factors such as  land-use change, land management and climate change. The amount of additional carbon potentially stored in the soil is the subject of much debate in the scientific community. We present a global database compiling the results of 217 meta-analyses analyzing the effects of land management, land-use change and climate change on SOC. We report a total of 15,857 effect sizes, 6,550 directly related to soil carbon, and 9,307 related to other associated soil or plant variables. The database further synthesizes results of 13,632 unique primary studies across more than 150 countries that were used in the meta-analyses. Meta-analyses and their effect sizes and were classified by type of intervention and land use, outcomes, country and region. This database helps to understand the drivers of SOC sequestration, the associated co-benefits and potential drawbacks, and is a useful tool to guide future global climate change policies.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3