An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset

Author:

Payette KellyORCID,de Dumast PriscilleORCID,Kebiri HamzaORCID,Ezhov Ivan,Paetzold Johannes C.,Shit Suprosanna,Iqbal AsimORCID,Khan Romesa,Kottke RaimundORCID,Grehten Patrice,Ji Hui,Lanczi Levente,Nagy Marianna,Beresova Monika,Nguyen Thi Dao,Natalucci GiancarloORCID,Karayannis TheofanisORCID,Menze BjoernORCID,Bach Cuadra MeritxellORCID,Jakab Andras

Abstract

AbstractIt is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms.

Funder

OPO-Stiftung

EMDO Stiftung

Hasler Stiftung

University of Zurich | Foundation for Research in Science and the Humanities

Anna Müller Grocholski Foundation FZK Grant ZNZ PhD Grant

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3