Second-harmonic generation tensors from high-throughput density-functional perturbation theory

Author:

Trinquet VictorORCID,Naccarato Francesco,Brunin Guillaume,Petretto Guido,Wirtz LudgerORCID,Hautier Geoffroy,Rignanese Gian-MarcoORCID

Abstract

AbstractOptical materials play a key role in enabling modern optoelectronic technologies in a wide variety of domains such as the medical or the energy sector. Among them, nonlinear optical crystals are of primary importance to achieve a broader range of electromagnetic waves in the devices. However, numerous and contradicting requirements significantly limit the discovery of new potential candidates, which, in turn, hinders the technological development. In the present work, the static nonlinear susceptibility and dielectric tensor are computed via density-functional perturbation theory for a set of 579 inorganic semiconductors. The computational methodology is discussed and the provided database is described with respect to both its data distribution and its format. Several comparisons with both experimental and results from literature allow to confirm the reliability of our data. The aim of this work is to provide a relevant dataset to foster the identification of promising nonlinear optical crystals in order to motivate their subsequent experimental investigation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3