Abstract
AbstractEvent-based surveillance (EBS) gathers information from a variety of data sources, including online news articles. Unlike the data from formal reporting, the EBS data are not structured, and their interpretation can overwhelm epidemic intelligence (EI) capacities in terms of available human resources. Therefore, diverse EBS systems that automatically process (all or part of) the acquired nonstructured data from online news articles have been developed. These EBS systems (e.g., GPHIN, HealthMap, MedISys, ProMED, PADI-web) can use annotated data to improve the surveillance systems. This paper describes a framework for the annotation of epidemiological information in animal disease-related news articles. We provide annotation guidelines that are generic and applicable to both animal and zoonotic infectious diseases, regardless of the pathogen involved or its mode of transmission (e.g., vector-borne, airborne, by contact). The framework relies on the successive annotation of all the sentences from a news article. The annotator evaluates the sentences in a specific epidemiological context, corresponding to the publication date of the news article.
Funder
EC | Horizon 2020 Framework Programme
Fonds De La Recherche Scientifique - FNRS
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献