A multi-sensor human gait dataset captured through an optical system and inertial measurement units

Author:

Santos GeiseORCID,Wanderley Marcelo,Tavares Tiago,Rocha Anderson

Abstract

AbstractDifferent technologies can acquire data for gait analysis, such as optical systems and inertial measurement units (IMUs). Each technology has its drawbacks and advantages, fitting best to particular applications. The presented multi-sensor human gait dataset comprises synchronized inertial and optical motion data from 25 participants free of lower-limb injuries, aged between 18 and 47 years. A smartphone and a custom micro-controlled device with an IMU were attached to one of the participant’s legs to capture accelerometer and gyroscope data, and 42 reflexive markers were taped over the whole body to record three-dimensional trajectories. The trajectories and inertial measurements were simultaneously recorded and synchronized. Participants were instructed to walk on a straight-level walkway at their normal pace. Ten trials for each participant were recorded and pre-processed in each of two sessions, performed on different days. This dataset supports the comparison of gait parameters and properties of inertial and optical capture systems, whereas allows the study of gait characteristics specific for each system.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PrivLet: A differential privacy and inverse wavelet decomposition framework for secure and optimized hemiplegic gait classification;Biomedical Signal Processing and Control;2024-10

2. Deep Reinforcement Learning Based Control of Lower Limb Exoskeleton;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. The Poses for Equine Research Dataset (PFERD);Scientific Data;2024-05-15

4. A Comparative Study of Gait Analysis Technologies;2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2023-09-25

5. A Survey of Datasets, Applications, and Models for IMU Sensor Signals;2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3