Abstract
AbstractWe present forecasts of land-use/land-cover (LULC) change for Switzerland for three time-steps in the 21st century under the representative concentration pathways 4.5 and 8.5, and at 100-m spatial and 14-class thematic resolution. We modelled the spatial suitability for each LULC class with a neural network (NN) using > 200 predictors and accounting for climate and policy changes. We improved model performance by using a data augmentation algorithm that synthetically increased the number of cells of underrepresented classes, resulting in an overall quantity disagreement of 0.053 and allocation disagreement of 0.15, which indicate good prediction accuracy. These class-specific spatial suitability maps outputted by the NN were then merged in a single LULC map per time-step using the CLUE-S algorithm, accounting for LULC demand for the future and a set of LULC transition rules. As the first LULC forecast for Switzerland at a thematic resolution comparable to available LULC maps for the past, this product lends itself to applications in land-use planning, resource management, ecological and hydraulic modelling, habitat restoration and conservation.
Funder
Swiss Federal Office for the Environment
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献