Abstract
AbstractAssessment of current and future growth in the global rooftop area is important for understanding and planning for a robust and sustainable decentralised energy system. These estimates are also important for urban planning studies and designing sustainable cities thereby forwarding the ethos of the Sustainable Development Goals 7 (clean energy), 11 (sustainable cities), 13 (climate action) and 15 (life on land). Here, we develop a machine learning framework that trains on big data containing ~700 million open-source building footprints, global land cover, road, and population datasets to generate globally harmonised estimates of growth in rooftop area for five different future growth narratives covered by Shared Socioeconomic Pathways. The dataset provides estimates for ~3.5 million fishnet tiles of 1/8 degree spatial resolution with data on gross rooftop area for five growth narratives covering years 2020–2050 in decadal time steps. This single harmonised global dataset can be used for climate change, energy transition, biodiversity, urban planning, and disaster risk management studies covering continental to conurbation geospatial levels.
Funder
Science Foundation Ireland
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC