Abstract
AbstractAccurate location-based big data has a high resolution and a direct interaction with human activities, allowing for fine-scale population spatial data to be realized. We take the average of Tencent user location big data as a measure of ambient population. The county-level statistical population data in 2018 was used as the assigned input data. The log linear spatially weighted regression model was used to establish the relationship between location data and statistical data to allocate the latter to a 0.01° grid, and the ambient population data of mainland China was obtained. Extracting street-level (lower than county-level) statistics for accuracy testing, we found that POP2018 has the best fit with the actual permanent population (R2 = 0.91), and the error is the smallest (MSEPOP2018 = 22.48 <MSEWorldPop = 37.24 <MSELandScan = 100.91). This research supplemented in the refined spatial distribution data of people between census years, as well as presenting the application technique of big data in ambient population estimation and zoning mapping.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献