Open source and reproducible and inexpensive infrastructure for data challenges and education

Author:

DeWitt Peter E.ORCID,Rebull Margaret A.,Bennett Tellen D.

Abstract

AbstractData sharing is necessary to maximize the actionable knowledge generated from research data. Data challenges can encourage secondary analyses of datasets. Data challenges in biomedicine often rely on advanced cloud-based computing infrastructure and expensive industry partnerships. Examples include challenges that use Google Cloud virtual machines and the Sage Bionetworks Dream Challenges platform. Such robust infrastructures can be financially prohibitive for investigators without substantial resources. Given the potential to develop scientific and clinical knowledge and the NIH emphasis on data sharing and reuse, there is a need for inexpensive and computationally lightweight methods for data sharing and hosting data challenges. To fill that gap, we developed a workflow that allows for reproducible model training, testing, and evaluation. We leveraged public GitHub repositories, open-source computational languages, and Docker technology. In addition, we conducted a data challenge using the infrastructure we developed. In this manuscript, we report on the infrastructure, workflow, and data challenge results. The infrastructure and workflow are likely to be useful for data challenges and education.

Funder

U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3