Abstract
AbstractPredicting future climatic conditions at high spatial resolution is essential for many applications and impact studies in science. Here, we present monthly time series data on precipitation, minimum- and maximum temperature for four downscaled global circulation models. We used model output statistics in combination with mechanistic downscaling (the CHELSA algorithm) to calculate mean monthly maximum and minimum temperatures, as well as monthly precipitation at ~5 km spatial resolution globally for the years 2006–2100. We validated the performance of the downscaling algorithm by comparing model output with the observed climate of the historical period 1950–1969.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献