Abstract
AbstractRecent advances in high-throughput experiments and systems biology approaches have resulted in hundreds of publications identifying “immune signatures”. Unfortunately, these are often described within text, figures, or tables in a format not amenable to computational processing, thus severely hampering our ability to fully exploit this information. Here we present a data model to represent immune signatures, along with the Human Immunology Project Consortium (HIPC) Dashboard (www.hipc-dashboard.org), a web-enabled application to facilitate signature access and querying. The data model captures the biological response components (e.g., genes, proteins, cell types or metabolites) and metadata describing the context under which the signature was identified using standardized terms from established resources (e.g., HGNC, Protein Ontology, Cell Ontology). We have manually curated a collection of >600 immune signatures from >60 published studies profiling human vaccination responses for the current release. The system will aid in building a broader understanding of the human immune response to stimuli by enabling researchers to easily access and interrogate published immune signatures.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases
Gouvernement du Canada | Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献