User-focused evaluation of National Ecological Observatory Network streamflow estimates

Author:

Rhea SpencerORCID,Gubbins Nicholas,DelVecchia Amanda G.,Ross Matthew R. V.,Bernhardt Emily S.

Abstract

AbstractAccurately estimating stream discharge is crucial for many ecological, biogeochemical, and hydrologic analyses. As of September 2022, The National Ecological Observatory Network (NEON) provided up to 5 years of continuous discharge estimates at 28 streams across the United States. NEON created rating curves at each site in a Bayesian framework, parameterized using hydraulic controls and manual measurements of discharge. Here we evaluate the reliability of these discharge estimates with three approaches. We (1) compared predicted to observed discharge, (2) compared predicted to observed stage, and (3) calculated the proportion of discharge estimates extrapolated beyond field measurements. We considered 1,523 site-months of continuous streamflow predictions published by NEON. Of these, 39% met our highest quality criteria, 11% fell into an intermediate classification, and 50% of site-months were classified as unreliable. We provided diagnostic metrics and categorical evaluations of continuous discharge and stage estimates by month for each site, enabling users to rapidly query for suitable NEON data.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3