Comparative transcriptomic analysis highlights contrasting levels of resistance of Vitis vinifera and Vitis amurensis to Botrytis cinerea

Author:

Wan Ran,Guo Chunlei,Hou Xiaoqing,Zhu Yanxun,Gao Min,Hu Xiaoyan,Zhang Songlin,Jiao ChenORCID,Guo Rongrong,Li ZhiORCID,Wang Xiping

Abstract

AbstractBotrytis cinerea is a major grapevine (Vitis spp.) pathogen, but some genotypes differ in their degree of resistance. For example, the Vitis vinifera cultivar Red Globe (RG) is highly susceptible, but V. amurensis Rupr Shuangyou (SY) is highly resistant. Here, we used RNA sequencing analysis to characterize the transcriptome responses of these two genotypes to B. cinerea inoculation at an early infection stage. Approximately a quarter of the genes in RG presented significant changes in transcript levels during infection, the number of which was greater than that in the SY leaves. The genes differentially expressed between infected leaves of SY and RG included those associated with cell surface structure, oxidation, cell death and C/N metabolism. We found evidence that an imbalance in the levels of reactive oxygen species (ROS) and redox homeostasis probably contributed to the susceptibility of RG to B. cinerea. SY leaves had strong antioxidant capacities and improved ROS homeostasis following infection. Regulatory network prediction suggested that WRKY and MYB transcription factors are associated with the abscisic acid pathway. Weighted gene correlation network analysis highlighted preinfection features of SY that might contribute to its increased resistance. Moreover, overexpression of VaWRKY10 in Arabidopsis thaliana and V. vinifera Thompson Seedless enhanced resistance to B. cinerea. Collectively, our study provides a high-resolution view of the transcriptional changes of grapevine in response to B. cinerea infection and novel insights into the underlying resistance mechanisms.

Funder

National Natural Science Foundation of China

Program for Innovative Research Team of Grape Germplasm Resources and Breeding

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3