MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis

Author:

Dong Qinglong,Duan Dingyue,Zheng Wenqian,Huang Dong,Wang Qian,Li Xiaoran,Mao Ke,Ma Fengwang

Abstract

AbstractHigh temperature (HT) is one of the most important environmental stress factors and seriously threatens plant growth, development, and production. VQ motif-containing proteins are transcriptional regulators that have been reported to regulate plant growth and developmental processes, including responses to biotic and abiotic stresses. However, the relationships between VQ motif-containing proteins and HT stress have not been studied in depth in plants. In this study, transgenic apple (Malus domestica) plants overexpressing the apple VQ motif-containing protein-coding gene (MdVQ37) were exposed to HT stress, and the transgenic lines exhibited a heat-sensitive phenotype. In addition, physiological and biochemical studies revealed that, compared with WT plants, transgenic lines had lower enzymatic activity and photosynthetic capacity and lower amounts of nonenzymatic antioxidant system metabolites under HT stress. Transcriptome analysis revealed 1379 genes whose expression differed between the transgenic lines and WT plants. GO and KEGG pathway analyses showed that transcription factor activity and plant hormone signaling pathways were differentially influenced and enriched in the transgenic lines. Salicylic acid (SA) content analysis indicated that overexpression of MdVQ37 reduced the content of endogenous SA by regulating the expression of SA catabolism-related genes, which ultimately resulted in disruption of the SA-dependent signaling pathway under HT stress. The application of SA slightly increased the survival rate of the transgenic lines under HT stress. Taken together, our results indicate that apple MdVQ37 has a regulatory function in basal thermotolerance by modulating the activity of transcription factors and SA homeostasis. Overall, this study provides novel insights that improve our understanding of the various functions of VQ motif-containing proteins.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3