Author:
Pei Li,Wang Baishi,Ye Jian,Hu Xiaodi,Fu Lihong,Li Kui,Ni Zhiyu,Wang Zhenlong,Wei Yujie,Shi Luye,Zhang Ying,Bai Xue,Jiang Mengwan,Wang Shuhui,Ma Chunling,Li Shujin,Liu Kaihui,Li Wanshui,Cong Bin
Abstract
AbstractOpium poppy (Papaver somniferum) is a source of morphine, codeine, and semisynthetic derivatives, including oxycodone and naltrexone. Here, we report the de novo assembly and genomic analysis of P. somniferum traditional landrace ‘Chinese Herbal Medicine’. Variations between the 2.62 Gb CHM genome and that of the previously sequenced high noscapine 1 (HN1) variety were also explored. Among 79,668 protein-coding genes, we functionally annotated 88.9%, compared to 68.8% reported in the HN1 genome. Gene family and 4DTv comparative analyses with three other Papaveraceae species revealed that opium poppy underwent two whole-genome duplication (WGD) events. The first of these, in ancestral Ranunculales, expanded gene families related to characteristic secondary metabolite production and disease resistance. The more recent species-specific WGD mediated by transposable elements resulted in massive genome expansion. Genes carrying structural variations and large-effect variants associated with agronomically different phenotypes between CHM and HN1 that were identified through our transcriptomic comparison of multiple organs and developmental stages can enable the development of new varieties. These genomic and transcriptomic analyses will provide a valuable resource that informs future basic and agricultural studies of the opium poppy.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献