Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles?

Author:

Wang Xiaojing,Ding Jing,Lin Shanshan,Liu Decai,Gu Tingting,Wu Han,Trigiano Robert N.,McAvoy Richard,Huang Jinling,Li Yi

Abstract

AbstractCytokinin oxidase/dehydrogenase (CKX) is a key enzyme responsible for the degradation of endogenous cytokinins. However, the origins and roles of CKX genes in angiosperm evolution remain unclear. Based on comprehensive bioinformatic and transgenic plant analyses, we demonstrate that the CKXs of land plants most likely originated from an ancient chlamydial endosymbiont during primary endosymbiosis. We refer to the CKXs retaining evolutionarily ancient characteristics as “ancient CKXs” and those that have expanded and functionally diverged in angiosperms as “non-ancient CKXs”. We show that the expression of some non-ancient CKXs is rapidly inducible within 15 min upon the dehydration of Arabidopsis, while the ancient CKX (AtCKX7) is not drought responsive. Tobacco plants overexpressing a non-ancient CKX display improved oxidative and drought tolerance and root growth. Previous mutant studies have shown that non-ancient CKXs regulate organ development, particularly that of flowers. Furthermore, ancient CKXs preferentially degrade cis-zeatin (cZ)-type cytokinins, while non-ancient CKXs preferentially target N6-(Δ2-isopentenyl) adenines (iPs) and trans-zeatins (tZs). Based on the results of this work, an accompanying study (Wang et al. 10.1038/s41438-019-0211-x) and previous studies, we hypothesize that non-ancient CKXs and their preferred substrates of iP/tZ-type cytokinins regulate angiosperm organ development and environmental stress responses, while ancient CKXs and their preferred substrates of cZs play a housekeeping role, which echoes the conclusions and hypothesis described in the accompanying report (Wang, X. et al. Evolution and roles of cytokinin genes in angiosperms 1: Doancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic Res7, (2020). 10.1038/s41438-019-0211-x).

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3