Abstract
AbstractCynodon species can be used for multiple purposes and have high economic and ecological significance. However, the genetic basis of the favorable agronomic traits of Cynodon species is poorly understood, partially due to the limited availability of genomic resources. In this study, we report a chromosome-scale genome assembly of a diploid Cynodon species, C. transvaalensis, obtained by combining Illumina and Nanopore sequencing, BioNano, and Hi-C. The assembly contains 282 scaffolds (~423.42 Mb, N50 = 5.37 Mb), which cover ~93.2% of the estimated genome of C. transvaalensis (~454.4 Mb). Furthermore, 90.48% of the scaffolds (~383.08 Mb) were anchored to nine pseudomolecules, of which the largest was 60.78 Mb in length. Evolutionary analysis along with transcriptome comparison provided a preliminary genomic basis for the adaptation of this species to tropical and/or subtropical climates, typically with dry summers. The genomic resources generated in this study will not only facilitate evolutionary studies of the Chloridoideae subfamily, in particular, the Cynodonteae tribe, but also facilitate functional genomic research and genetic breeding in Cynodon species for new leading turfgrass cultivars in the future.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献