Abstract
AbstractRecognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (Multi-feature Combined Cultivar Identification System), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online.
Funder
Wuhan University of Technology
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Reference69 articles.
1. Sohn, H. B. et al. Barcode system for genetic identification of soybean [Glycine max (L.) Merrill] cultivars using InDel markers specific to dense variation blocks. Front. Plant Sci. 8, 520 (2017).
2. Korir, N. K. et al. Plant variety and cultivar identification: advances and prospects. Crit. Rev. Biotechnol. 33, 111–125 (2013).
3. Jamali, S. et al. Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers., Iranian. J. Crop Sci. 13, 131–145 (2011).
4. Wu, K. et al. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genet. 15, 35 (2014).
5. Lee, S. H. et al. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 71, 1–13 (2017).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献