Question-based computational language approach outperforms rating scales in quantifying emotional states

Author:

Sikström SverkerORCID,Valavičiūtė IevaORCID,Kuusela InariORCID,Evors Nicole

Abstract

AbstractPsychological constructs are commonly quantified with closed-ended rating scales. However, recent advancements in natural language processing (NLP) enable the quantification of open-ended language responses. Here we demonstrate that descriptive word responses analyzed using NLP show higher accuracy in categorizing emotional states compared to traditional rating scales. One group of participants (N = 297) generated narratives related to depression, anxiety, satisfaction, or harmony, summarized them with five descriptive words, and rated them using rating scales. Another group (N = 434) evaluated these narratives (with descriptive words and rating scales) from the author’s perspective. The descriptive words were quantified using NLP, and machine learning was used to categorize the responses into the corresponding emotional states. The results showed a significantly higher number of accurate categorizations of the narratives based on descriptive words (64%) than on rating scales (44%), questioning the notion that rating scales are more precise in measuring emotional states than language-based measures.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3