Abstract
AbstractVisual distraction is a ubiquitous aspect of everyday life. Studying the consequences of distraction during temporally extended tasks, however, is not tractable with traditional methods. Here we developed a virtual reality approach that segments complex behaviour into cognitive subcomponents, including encoding, visual search, working memory usage, and decision-making. Participants copied a model display by selecting objects from a resource pool and placing them into a workspace. By manipulating the distractibility of objects in the resource pool, we discovered interfering effects of distraction across the different cognitive subcomponents. We successfully traced the consequences of distraction all the way from overall task performance to the decision-making processes that gate memory usage. Distraction slowed down behaviour and increased costly body movements. Critically, distraction increased encoding demands, slowed visual search, and decreased reliance on working memory. Our findings illustrate that the effects of visual distraction during natural behaviour can be rather focal but nevertheless have cascading consequences.
Funder
Studentship by the Clarendon Fund and the Department of Experimental Psychology, University of Oxford
Deutsche Forschungsgemeinschaft
Hessisches Ministerium für Wissenschaft und Kunst
Wellcome Trust
James S. McDonnell Foundation
DH | National Institute for Health Research
Publisher
Springer Science and Business Media LLC