Attractor dynamics with activity-dependent plasticity capture human working memory across time scales

Author:

Brennan Connor,Proekt AlexORCID

Abstract

AbstractMost cognitive functions require the brain to maintain immediately preceding stimuli in working memory. Here, using a human working memory task with multiple delays, we test the hypothesis that working memories are stored in a discrete set of stable neuronal activity configurations called attractors. We show that while discrete attractor dynamics can approximate working memory on a single time scale, they fail to generalize across multiple timescales. This failure occurs because at longer delay intervals the responses contain more information about the stimuli than can be stored in a discrete attractor model. We present a modeling approach that combines discrete attractor dynamics with activity-dependent plasticity. This model successfully generalizes across all timescales and correctly predicts intertrial interactions. Thus, our findings suggest that discrete attractor dynamics are insufficient to model working memory and that activity-dependent plasticity improves durability of information storage in attractor systems.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

Google PhD Fellowship Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3