Global alteration of T-lymphocyte metabolism by PD-L1 checkpoint involves a block of de novo nucleoside phosphate synthesis

Author:

Palaskas Nicolaos Jay,Garcia Jacob David,Shirazi Roksana,Shin Daniel Sanghoon,Puig-Saus Cristina,Braas Daniel,Ribas AntoniORCID,Graeber Thomas GlenORCID

Abstract

AbstractMetabolic obstacles of the tumor microenvironment remain a challenge to T-cell-mediated cancer immunotherapies. To better understand the interplay of immune checkpoint signaling and immune metabolism, this study developed and used an optimized metabolite extraction protocol for non-adherent primary human T-cells, to broadly profile in vitro metabolic changes effected by PD-1 signaling by mass spectrometry-based metabolomics and isotopomer analysis. Inhibitory signaling reduced aerobic glycolysis and glutaminolysis. A general scarcity across the panel of metabolites measured supported widespread metabolic regulation by PD-1. Glucose carbon fate analysis supported tricarboxylic acid cycle reliance on pyruvate carboxylation, catabolic-state fluxes into acetyl-CoA and succinyl-CoA, and a block in de novo nucleoside phosphate synthesis that was accompanied by reduced mTORC1 signaling. Nonetheless, exogenous administration of nucleosides was not sufficient to ameliorate proliferation of T-cells in the context of multiple metabolic insufficiencies due to PD-L1 treatment. Carbon fate analysis did not support the use of primarily glucose-derived carbons to fuel fatty acid beta oxidation, in contrast to reports on T-memory cells. These findings add to our understanding of metabolic dysregulation by PD-1 signaling and inform the effort to rationally develop metabolic interventions coupled with immune-checkpoint blockade for increased treatment efficacy.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3