The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1

Author:

Huang Wei,Sun Yu-Meng,Pan Qi,Fang Ke,Chen Xiao-Tong,Zeng Zhan-Cheng,Chen Tian-Qi,Zhu Shun-Xin,Huang Li-Bin,Luo Xue-Qun,Wang Wen-Tao,Chen Yue-Qin

Abstract

AbstractLong noncoding RNAs (lncRNAs) are usually 5′ capped and 3′ polyadenylated, similar to most typical mRNAs. However, recent studies revealed a type of snoRNA-related lncRNA with unique structures, leading to questions on how they are processed and how they work. Here, we identify a novel snoRNA-related lncRNA named LNC-SNO49AB containing two C/D box snoRNA sequences, SNORD49A and SNORD49B; and show that LNC-SNO49AB represents an unreported type of lncRNA with a 5′-end m7G and a 3′-end snoRNA structure. LNC-SNO49AB was found highly expressed in leukemia patient samples, and silencing LNC-SNO49AB dramatically suppressed leukemia progression in vitro and in vivo. Subcellular location indicated that the LNC-SNO49AB is mainly located in nucleolus and interacted with the nucleolar protein fibrillarin. However, we found that LNC-SNO49AB does not play a role in 2′-O-methylation regulation, a classical function of snoRNA; instead, its snoRNA structure affected the lncRNA stability. We further demonstrated that LNC-SNO49AB could directly bind to the adenosine deaminase acting on RNA 1(ADAR1) and promoted its homodimerization followed by a high RNA A-to-I editing activity. Transcriptome profiling shows that LNC-SNO49AB and ADAR1 knockdown respectively share very similar patterns of RNA modification change in downstream signaling pathways, especially in cell cycle pathways. These findings suggest a previously unknown class of snoRNA-related lncRNAs, which function via a manner in nucleolus independently on snoRNA-guide rRNA modification. This is the first report that a lncRNA regulates genome-wide RNA A-to-I editing by enhancing ADAR1 dimerization to facilitate hematopoietic malignancy, suggesting that LNC-SNO49AB may be a novel target in therapy directed to leukemia.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3