Dynamics of histone acetylation during human early embryogenesis

Author:

Wu KeliangORCID,Fan Dongdong,Zhao Han,Liu Zhenbo,Hou Zhenzhen,Tao Wenrong,Yu Guanling,Yuan Shenli,Zhu Xiaoxiao,Kang Mengyao,Tian YongORCID,Chen Zi-JiangORCID,Liu JiangORCID,Gao Lei

Abstract

AbstractIt remains poorly understood about the regulation of gene and transposon transcription during human early embryogenesis. Here, we report that broad H3K27ac domains are genome-widely distributed in human 2-cell and 4-cell embryos and transit into typical peaks in the 8-cell embryos. The broad H3K27ac domains in early embryos before zygotic genome activation (ZGA) are also observed in mouse. It suggests that broad H3K27ac domains play conserved functions before ZGA in mammals. Intriguingly, a large portion of broad H3K27ac domains overlap with broad H3K4me3 domains. Further investigation reveals that histone deacetylases are required for the removal or transition of broad H3K27ac domains and ZGA. After ZGA, the number of typical H3K27ac peaks is dynamic, which is associated with the stage-specific gene expression. Furthermore, P300 is important for the establishment of H3K27ac peaks and the expression of associated genes in early embryos after ZGA. Our data also indicate that H3K27ac marks active transposons in early embryos. Interestingly, H3K27ac and H3K18ac signals rather than H3K9ac signals are enriched at ERVK elements in mouse embryos after ZGA. It suggests that different types of histone acetylations exert distinct roles in the activation of transposons. In summary, H3K27ac modification undergoes extensive reprogramming during early embryo development in mammals, which is associated with the expression of genes and transposons.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3