Abstract
AbstractThe air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Genetics,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献