Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA

Author:

Bai Yun,Kan Shifeng,Zhou Shixin,Wang Yuting,Xu Jun,Cooke John P,Wen Jinhua,Deng Hongkui

Abstract

Abstract Chimeric antigen receptor T cell immunotherapy is a promising therapeutic strategy for treating tumors, demonstrating its efficiency in eliminating several hematological malignancies in recent years. However, a major obstacle associated with current chimeric antigen receptor T cell immunotherapy is that the limited replicative lifespan of chimeric antigen receptor T cells prohibits the long-term persistence and expansion of these cells in vivo, potentially hindering the long-term therapeutic effects of chimeric antigen receptor T cell immunotherapy. Here we showed that the transient delivery of modified mRNA encoding telomerase reverse transcriptase to human chimeric antigen receptor T cells targeting the CD19 antigen (CD19 chimeric antigen receptor T cells) would transiently elevate the telomerase activity in these cells, leading to increased proliferation and delayed replicative senescence without risk of insertion mutagenesis or immortalization. Importantly, compared to conventional CD19 chimeric antigen receptor T cells, after the transient delivery of telomerase reverse transcriptase mRNA, these CD19 chimeric antigen receptor T cells showed improved persistence and proliferation in mouse xenograft tumor models of human B-cell malignancies. Furthermore, the transfer of CD19 chimeric antigen receptor T cells after the transient delivery of telomerase reverse transcriptase mRNA enhanced long-term antitumor effects in mouse xenograft tumor models compared with conventional CD19 chimeric antigen receptor T cell transfer. The results of the present study provide an effective and safe method to improve the therapeutic potential of chimeric antigen receptor T cells, which might be beneficial for treating other types of cancer, particularly solid tumors.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3