Arctic warming by abundant fine sea salt aerosols from blowing snow

Author:

Gong XiandaORCID,Zhang JiaoshiORCID,Croft BettyORCID,Yang Xin,Frey Markus M.ORCID,Bergner Nora,Chang Rachel Y.-W.,Creamean Jessie M.,Kuang Chongai,Martin Randall V.ORCID,Ranjithkumar Ananth,Sedlacek Arthur J.ORCID,Uin JanekORCID,Willmes SaschaORCID,Zawadowicz Maria A.,Pierce Jeffrey R.ORCID,Shupe Matthew D.ORCID,Schmale JuliaORCID,Wang JianORCID

Abstract

AbstractThe Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2 under cloudy sky conditions.

Funder

DOE | SC | Biological and Environmental Research

Ocean Frontier Institute

RCUK | Natural Environment Research Council

EC | Horizon 2020 Framework Programme

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

NSF | Directorate for Geosciences

United States Department of Commerce | National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3