Globally limited but severe shallow-shelf euxinia during the end-Triassic extinction

Author:

Bond Andrew D.ORCID,Dickson Alexander J.ORCID,Ruhl MichaORCID,Bos RemcoORCID,van de Schootbrugge BasORCID

Abstract

AbstractOne of the most severe extinctions of complex marine life in Earth’s history occurred at the end of the Triassic period (~201.4 million years ago). The marine extinction was initiated by large igneous province volcanism and has tentatively been linked to the spread of anoxic conditions. However, the global-scale pattern of anoxic conditions across the end-Triassic event is not well constrained. Here we use the sedimentary enrichment and isotopic composition of the redox-sensitive element molybdenum to reconstruct global–local marine redox conditions through the extinction interval. Peak δ98Mo values indicate that the global distribution of sulfidic marine conditions was similar to the modern ocean during the extinction interval. Meanwhile, Tethyan shelf sediments record pulsed, positive δ98Mo excursions indicative of locally oxygen-poor, sulfidic conditions. We suggest that pulses of severe marine de-oxygenation were restricted largely to marginal marine environments during the latest Triassic and played a substantial role in shallow-marine extinction phases at that time. Importantly, these results show that global marine biodiversity, and possibly ecosystem stability, were vulnerable to geographically localized anoxic conditions. Expanding present-day marine anoxia in response to anthropogenic marine nutrient supply and climate forcing may therefore have substantial consequences for global biodiversity and wider ecosystem stability.

Funder

RCUK | Natural Environment Research Council

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3