Titanium-rich basaltic melts on the Moon modulated by reactive flow processes

Author:

Klaver MartijnORCID,Klemme StephanORCID,Liu Xiao-Ning,Hin Remco C.ORCID,Coath Christopher D.,Anand MaheshORCID,Lissenberg C. JohanORCID,Berndt JasperORCID,Elliott Tim

Abstract

AbstractThe origin of titanium-rich basaltic magmatism on the Moon remains enigmatic. Ilmenite-bearing cumulates in the lunar mantle are often credited as the source, but their partial melts are not a compositional match and are too dense to enable eruption. Here we use petrological reaction experiments to show that partial melts of ilmenite-bearing cumulates react with olivine and orthopyroxene in the lunar mantle, shifting the melt composition to that of the high-Ti suite. New high-precision Mg isotope data confirm that high-Ti basalts have variable and isotopically light Mg isotope compositions that are inconsistent with equilibrium partial melting. We employ a diffusion model to demonstrate that kinetic isotope fractionation during reactive flow of partial melts derived from ilmenite-bearing cumulates can explain these anomalously light Mg isotope compositions, as well as the isotope composition of other elements such as Fe, Ca and Ti. Although this model does not fully replicate lunar melt–solid interaction, we suggest that titanium-rich magmas erupted on the surface of the Moon can be derived through partial melting of ilmenite-bearing cumulates, but melts undergo extensive modification of their elemental and isotopic composition through reactive flow in the lunar mantle. Reactive flow may therefore be the critical process that decreases melt density and allows high-Ti melts to erupt on the lunar surface.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3