Shortwave absorption by wildfire smoke dominated by dark brown carbon

Author:

Chakrabarty Rajan K.ORCID,Shetty Nishit J.,Thind Arashdeep S.ORCID,Beeler PaytonORCID,Sumlin Benjamin J.ORCID,Zhang ChenchongORCID,Liu Pai,Idrobo Juan C.ORCID,Adachi KoujiORCID,Wagner Nicholas L.,Schwarz Joshua P.ORCID,Ahern Adam,Sedlacek Arthur J.ORCID,Lambe AndrewORCID,Daube ConnerORCID,Lyu MingORCID,Liu ChaoORCID,Herndon Scott,Onasch Timothy B.ORCID,Mishra RohanORCID

Abstract

AbstractWildfires emit large amounts of black carbon and light-absorbing organic carbon, known as brown carbon, into the atmosphere. These particles perturb Earth’s radiation budget through absorption of incoming shortwave radiation. It is generally thought that brown carbon loses its absorptivity after emission in the atmosphere due to sunlight-driven photochemical bleaching. Consequently, the atmospheric warming effect exerted by brown carbon remains highly variable and poorly represented in climate models compared with that of the relatively nonreactive black carbon. Given that wildfires are predicted to increase globally in the coming decades, it is increasingly important to quantify these radiative impacts. Here we present measurements of ensemble-scale and particle-scale shortwave absorption in smoke plumes from wildfires in the western United States. We find that a type of dark brown carbon contributes three-quarters of the short visible light absorption and half of the long visible light absorption. This strongly absorbing organic aerosol species is water insoluble, resists daytime photobleaching and increases in absorptivity with night-time atmospheric processing. Our findings suggest that parameterizations of brown carbon in climate models need to be revised to improve the estimation of smoke aerosol radiative forcing and associated warming.

Funder

National Science Foundation

National Aeronautics and Space Administration

United States Department of Commerce | NOAA | Climate Program Office

U.S. Department of Energy

Japan Society for the Promotion of Science London

United States Department of Commerce | National Oceanic and Atmospheric Administration

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3