Abstract
AbstractConsiderable expansion of shrubs across the Arctic tundra has been observed in recent decades. These shrubs are thought to have a warming effect on permafrost by increasing snowpack thermal insulation, thereby limiting winter cooling and accelerating thaw. Here, we use ground temperature observations and heat transfer simulations to show that low shrubs can actually cool the ground in winter by providing a thermal bridge through the snowpack. Observations from unmanipulated herb tundra and shrub tundra sites on Bylot Island in the Canadian high Arctic reveal a 1.21 °C cooling effect between November and February. This is despite a snowpack that is twice as insulating in shrubs. The thermal bridging effect is reversed in spring when shrub branches absorb solar radiation and transfer heat to the ground. The overall thermal effect is likely to depend on snow and shrub characteristics and terrain aspect. The inclusion of these thermal bridging processes into climate models may have an important impact on projected greenhouse gas emissions by permafrost.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
European Commission
BNP Paribas | Fondation BNP Paribas
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献