Multi-proxy constraints on Atlantic circulation dynamics since the last ice age

Author:

Pöppelmeier FrerkORCID,Jeltsch-Thömmes Aurich,Lippold JörgORCID,Joos Fortunat,Stocker Thomas F.

Abstract

AbstractUncertainties persist in the understanding of the Atlantic meridional overturning circulation and its response to external perturbations such as freshwater or radiative forcing. Abrupt reduction of the Atlantic circulation is considered a climate tipping point that may have been crossed when Earth’s climate was propelled out of the last ice age. However, the evolution of the circulation since the Last Glacial Maximum (22–18 thousand years ago) remains insufficiently constrained due to model and proxy limitations. Here we leverage information from both a compilation of proxy records that track various aspects of the circulation and climate model simulations to constrain the Atlantic circulation over the past 20,000 years. We find a coherent picture of a shallow and weak Atlantic overturning circulation during the Last Glacial Maximum that reconciles apparently conflicting proxy evidence. Model–data comparison of the last deglaciation—starting from this new, multiple constrained glacial state—indicates a muted response during Heinrich Stadial 1 and that water mass geometry did not fully adjust to the strong reduction in overturning circulation during the comparably short Younger Dryas period. This demonstrates that the relationship between freshwater forcing and Atlantic overturning strength is strongly dependent on the climatic and oceanic background state.

Funder

EC | Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3