Drought response of the boreal forest carbon sink is driven by understorey–tree composition

Author:

Martínez-García EduardoORCID,Nilsson Mats B.ORCID,Laudon HjalmarORCID,Lundmark Tomas,Fransson Johan E. S.ORCID,Wallerman JörgenORCID,Peichl MatthiasORCID

Abstract

AbstractThe boreal forest is an important global carbon sink, but its response to drought remains uncertain. Here, we compiled biometric- and chamber-based flux data from 50 boreal forest stands to assess the impact of the 2018 European summer drought on net ecosystem production (NEP) across a 68 km2 managed landscape in northern Sweden. Our results reveal a non-uniform reduction in NEP (on average by 80 ± 16 g C m−2 yr1 or 57 ± 13%) across the landscape, which was greatest in young stands of 20–50 years (95 ± 39 g C m2 yr1), but gradually decreased towards older stands (54 ± 57 g C m2 yr1). This pattern was attributed to the higher sensitivity of forest-floor understorey to drought and its decreasing contribution to production relative to trees during stand development. This suggests that an age-dependent shift in understorey–tree composition with increasing stand age drives the drought response of the boreal forest NEP. Thus, our study advocates the need for partitioning ecosystem responses to improve empirical and modelling assessments of carbon cycle–climate feedbacks in boreal forests. It further implies that the forest age structure may strongly determine the carbon sink response to the projected increase in drought events across the managed boreal landscape.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3