Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice

Author:

Lauber JuliusORCID,Hattermann ToreORCID,de Steur LauraORCID,Darelius ElinORCID,Auger MatthisORCID,Nøst Ole AndersORCID,Moholdt Geir

Abstract

AbstractUnderstanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m yr−1, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.

Funder

Norges Forskningsråd

EC | Horizon 2020 Framework Programme

N/A

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3