Abstract
AbstractThe slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, with accelerating slip contributing to sea-level rise. Yet glacier slip remains poorly understood, and observational constraints are sparse. Here we use passive seismic observations to measure both frictional shear stress and slip at the bed of the Rutford Ice Stream in Antarctica using 100,000 repetitive stick-slip icequakes. We find that basal shear stresses and slip rates vary from 104to 107 Pa and 0.2 to 1.5 m per day, respectively. Friction and slip vary temporally over the order of hours, and spatially over 10s of metres, due to corresponding variations in effective normal stress and ice–bed interface material. Our findings suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective normal stresses may be significantly higher than previously thought. Our observations can provide constraints on the basal boundary conditions for ice-dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica and hence for reducing uncertainty in sea-level rise projections.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference84 articles.
1. Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2010GL043853 (2010).
2. Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).
3. Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
4. Joughin, I., Smith, B. E. & Schoof, C. G. Regularized Coulomb friction laws for ice sheet sliding: application to Pine Island Glacier, Antarctica. Geophys. Res. Lett. 46, 4764–4771 (2019).
5. Oppenheimer, M. et al. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 321–445 (Cambridge Univ. Press, 2019).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献