Novel mechanism of the COVID-19 associated coagulopathy (CAC) and vascular thromboembolism

Author:

Singh Mahavir,Pushpakumar Sathnur,Zheng Yuting,Smolenkova Irina,Akinterinwa Oluwaseun E.,Luulay Bana,Tyagi Suresh C.

Abstract

AbstractPrevious studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to ‘cytokine-storm’ led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3