SUPT4H1-edited stem cell therapy rescues neuronal dysfunction in a mouse model for Huntington’s disease

Author:

Park Hyun JungORCID,Han Areum,Kim Ji Yeon,Choi Jiwoo,Bae Hee Sook,Cho Gyu-bonORCID,Shin Hyejung,Shin Eun ji,Lee Kang-in,Kim Seokjoong,Lee Jae Young,Song JihwanORCID

Abstract

AbstractHuntington’s disease (HD) is a severe inherited neurological disorder caused by a CAG repeat expansion in the huntingtin gene (HTT), leading to the accumulation of mutant huntingtin with polyglutamine repeats. Despite its severity, there is no cure for this debilitating disease. HTT lowering strategies, including antisense oligonucleotides (ASO) showed promising results very recently. Attempts to develop stem cell-based therapeutics have shown efficacy in preclinical HD models. Using an HD patient’s autologous cells, which have genetic defects, may hamper therapeutic efficacy due to mutant HTT. Pretreating these cells to reduce mutant HTT expression and transcription may improve the transplanted cells’ therapeutic efficacy. To investigate this, we targeted the SUPT4H1 gene that selectively supports the transcription of long trinucleotide repeats. Transplanting SUPT4H1-edited HD-induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) into the YAC128 HD transgenic mouse model improved motor function compared to unedited HD iPSC-NPCs. Immunohistochemical analysis revealed reduced mutant HTT expression without compensating wild-type HTT expression. Further, SUPT4H1 editing increased neuronal and decreased reactive astrocyte differentiation in HD iPSC-NPCs compared to the unedited HD iPSC-NPCs. This suggests that ex vivo editing of SUPT4H1 can reduce mutant HTT expression and provide a therapeutic gene editing strategy for autologous stem cell transplantation in HD.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3