Abstract
AbstractBiomaterial-enabled de novo formation of non-fibrotic tissue in situ would provide an important tool to physicians. One example application, glottic insufficiency, is a debilitating laryngeal disorder wherein vocal folds do not fully close, resulting in difficulty speaking and swallowing. Preferred management of glottic insufficiency includes bulking of vocal folds via injectable fillers, however, the current options have associated drawbacks including inflammation, accelerated resorption, and foreign body response. We developed a novel iteration of microporous annealed particle (MAP) scaffold designed to provide persistent augmentation. Following a 14-month study of vocal fold augmentation using a rabbit vocal paralysis model, most MAP scaffolds were replaced with tissue de novo that matched the mixture of fibrotic and non-fibrotic collagens of the contralateral vocal tissue. Further, persistent tissue augmentation in MAP-treated rabbits was observed via MRI and via superior vocal function at 14 months relative to the clinical standard.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Biomedical Engineering,Medicine (miscellaneous)